
abaco Documentation

Joe Stubbs,KeDarius Whitley

May 17, 2021

Introduction:

1 Welcome to Abaco 1
1.1 What is Abaco . 1
1.2 Using Abaco . 1

2 Getting Started 3
2.1 Account Creation and Software Installation . 4
2.2 Working with TACC OAuth . 4
2.3 Abaco Quickstart . 6

3 Overview 11

4 Actor Registration 13
4.1 Notes . 14
4.2 Examples . 15

5 Abaco Context & Container Runtime 17
5.1 Context . 17
5.2 Runtime Environment . 18

6 Messages, Executions, and Logs 19
6.1 Messages . 19
6.2 Executions . 23
6.3 Logs . 27

7 Search 29
7.1 Metadata . 30
7.2 Inputs . 31
7.3 Search Examples . 33

8 Actor State 39
8.1 State . 39
8.2 Utilizing State in Actors to Accomplish Something . 39
8.3 Examples . 40
8.4 Additional Work . 41

9 Actor Sharing and Nonces 43
9.1 Permission Levels . 43
9.2 Public Actors . 44

i

9.3 Nonces . 44

10 Networks of Actors 47
10.1 Actor Aliases . 47
10.2 Actor Events, Links and WebHooks . 48
10.3 Actor Configs . 50

11 Autoscaling Actors 55
11.1 Official “sync” Hint . 55

12 API Reference 57

13 Abaco Samples 59

14 Reactor Recipes 61

15 Overview 63

16 Abaco CLI 65

17 Using Abaco from the TACC Cloud JupyterHub 67

ii

CHAPTER 1

Welcome to Abaco

1.1 What is Abaco

Abaco is an NSF-funded web service and distributed computing platform providing functions-as-a-service (FaaS) to
the research computing community. Abaco implements functions using the Actor Model of concurrent computation.
In Abaco, each actor is associated with a Docker image, and actor containers are executed in response to messages
posted to their inbox which itself is given by a URI exposed over HTTP.

Abaco will ultimately offer three primary higher-level capabilities on top of the underlying Actor model:

• Reactors for event-driven programming

• Asynchronous Executors for scaling out function calls within running applications, and

• Data Adapters for creating rationalized microservices from disparate and heterogeneous sources of data.

Reactors and Asynchronous Executors are available today while Data Adapters are still under active development.

1.2 Using Abaco

Abaco is in production and has been adopted by several projects. Abaco is available to researchers and students. To
learn more about the the system, including getting access, follow the instructions in Getting Started.

1

abaco Documentation

2 Chapter 1. Welcome to Abaco

CHAPTER 2

Getting Started

This Getting Started guide will walk you through the initial steps of setting up the necessary accounts and installing
the required software before moving to the Abaco Quickstart, where you will create and execute your first Abaco actor.
If you are already using Docker Hub and the TACC Cloud APIs, feel free to jump right to the Abaco Quickstart or
check out the Abaco Live Docs site.

• Account Creation and Software Installation

– Create a TACC account

– Create a Docker account

– Install the TACC Cloud Python SDK

• Working with TACC OAuth

– Create an OAuth Client

– Reuse an Existing Oauth Client

– Generate a Token

– Check Access to the TACC Cloud APIs

• Abaco Quickstart

– A Basic Python Function

– Building Images From a Dockerfile

* The FROM Instruction

* The RUN, ADD and CMD Instructions

– Registering an Actor

– Executing an Actor

– Retrieving the Logs

3

https://tacc.github.io/abaco-live-docs/

abaco Documentation

– Conclusion

2.1 Account Creation and Software Installation

2.1.1 Create a TACC account

The main instance of the Abaco platform is hosted at the Texas Advanced Computing Center (TACC). TACC designs
and deploys some of the world’s most powerful advanced computing technologies and innovative software solutions
to enable researchers to answer complex questions. To use the TACC-hosted Abaco service, please create a TACC
account .

2.1.2 Create a Docker account

Docker is an open-source container runtime providing operating-system-level virtualization. Abaco pulls images for
its actors from the public Docker Hub. To register actors you will need to publish images on Docker Hub, which
requires a Docker account .

2.1.3 Install the TACC Cloud Python SDK

To interact with the TACC-hosted Abaco platform in Python, we will leverage the TACC Cloud Python SDK. To install
it, simply run:

$ pip3 install agavepy

Attention: While agavepy works with both Python 2 and 3 we strongly recommend using Python 3.

2.2 Working with TACC OAuth

Authentication and authorization to the TACC Cloud APIs uses OAuth2, a widely-adopted web standard. Our imple-
mentation of OAuth2 is designed to give you the flexibility you need to script and automate use of TACC Cloud while
keeping your access credentials and digital assets secure. This is covered in great detail in our Developer Documenta-
tion but some key concepts will be highlighted here, interleaved with Python code.

2.2.1 Create an OAuth Client

The first step is to create an OAuth client. This is a one-time set up step, much like creating a TACC account. To do it,
we will use the TACC Cloud API Python SDK. First, import the Agave class and create python object called ag that
points to the TACC Cloud API server using your TACC username and password. Do so by typing the following in a
Python shell:

>>> from agavepy.agave import Agave
>>> ag = Agave(api_server='https://api.tacc.utexas.edu',
... username='your username',
... password='your password')

4 Chapter 2. Getting Started

https://tacc.utexas.edu
https://portal.tacc.utexas.edu/account-request
https://portal.tacc.utexas.edu/account-request
https://www.docker.com/
https://hub.docker.com/
https://oauth.net/2/

abaco Documentation

Once the object is instantiated, interact with it according to the API documentation and your specific usage needs. For
example, to create a new OAuth client we type the following:

>>> ag.clients.create(body={'clientName': 'enter a client name'})

You should see a response like:

{'_links': {'self': {'href': 'https://api.tacc.utexas.edu/clients/v2/abaco_quickstart
→˓'},
'subscriber': {'href': 'https://api.tacc.utexas.edu/profiles/v2/apitest'},
'subscriptions': {'href': 'https://api.tacc.utexas.edu/clients/v2/abaco_quickstart/
→˓subscriptions/'}},
'callbackUrl': '',
'consumerKey': 'pYV81QNBxkqeC6Nms3XBzk9UJuca',
'consumerSecret': 'Oug0gdLa3a_Xt37_fwxO6ZGNffUa',
'description': '',
'name': 'abaco_quickstart',
'tier': 'Unlimited'}

Record the consumerKey and consumerSecret in a secure place; you will use them over and over to generate Oauth
tokens, which are temporary credentials that you can use in place of putting your real credentials into code that is
scripting against the TACC APIs.

2.2.2 Reuse an Existing Oauth Client

Once you generate an OAuth client, you can re-use its key and secret:

>>> from agavepy.agave import Agave
>>> ag = Agave(api_server='https://api.tacc.utexas.edu',
... username='your username', password='your password',
... client_name='my_client',
... api_key='pYV81QNBxkqeC6Nms3XBzk9UJuca',
... api_secret='Oug0gdLa3a_Xt37_fwxO6ZGNffUa')

2.2.3 Generate a Token

With the ag object instantiated and an OAuth client created, we are ready to generate an OAuth token:

>>> ag.token.create()
Out[1]: 'c21199177da6dd4d14d659399a933f5'

Note that the token is automatically stored on the ag object for you. You are now ready to check your access to the
TACC Cloud APIs.

2.2.4 Check Access to the TACC Cloud APIs

The Agave object ag should now be configured to talk to all TACC Cloud APIs on your behalf. We can check that our
client is configured properly by making any API call. Here’s an example: Let’s retrieve the current user’s profile.

>>> ag.profiles.get()
Out[1]:
{'email': 'aci-cic@tacc.utexas.edu',
'first_name': 'API',

(continues on next page)

2.2. Working with TACC OAuth 5

abaco Documentation

(continued from previous page)

'full_name': 'API Test',
'last_name': 'Test',
'mobile_phone': '',
'phone': '',
'status': '',
'uid': 834517,
'username': 'apitest'}

2.3 Abaco Quickstart

In this Quickstart, we will create an Abaco actor from a basic Python function. Then we will execute our actor on the
Abaco cloud and get the execution results.

2.3.1 A Basic Python Function

Suppose we want to write a Python function that counts words in a string. We might write something like this:

def string_count(message):
words = message.split(' ')
word_count = len(words)
print('Number of words is: ' + str(word_count))

In order to process a message sent to an actor, we use the raw_message attribute of the context dictionary. We
can access it by using the get_context method from the actors module in agavepy.

For this example, create a new local directory to hold your work. Then, create a new file in this directory called
example.py. Add the following to this file:

example.py

from agavepy.actors import get_context

def string_count(message):
words = message.split(' ')
word_count = len(words)
print('Number of words is: ' + str(word_count))

context = get_context()
message = context['raw_message']
string_count(message)

2.3.2 Building Images From a Dockerfile

To register this function as an Abaco actor, we create a docker image that contains the python function and execute it
as part of the default command.

We can build a Docker image from a text file called a Dockerfile. You can think of a Dockerfile as a recipe for creating
images. The instructions within a Dockerfile either add files/folders to the image, add metadata to the image, or both.

6 Chapter 2. Getting Started

abaco Documentation

The FROM Instruction

Create a new file called Dockerfile in the same directory as your example.py file.

We can use the FROM instruction to start our new image from a known image. This should be the first line of our
Dockerfile. We will start an official Python image:

FROM python:3.6

The RUN, ADD and CMD Instructions

We can run arbitrary Linux commands to add files to our image. We’ll run the pip command to install the agavepy
library in our image:

RUN pip install --no-cache-dir agavepy

(note: there is a abacosample image that contains Python and the agavepy library; see Abaco Samples for more
details)

We can also add local files to our image using the ADD instruction. To add the example.py file from our local
directory, we use the following instruction:

ADD example.py /example.py

The last step is to write the command from running the application, which is simply python /example.py. We
use the CMD instruction to do that:

CMD ["python", "/example.py"]

With that, our Dockerfile is now ready. This is what is looks like:

FROM python:3.6

RUN pip install --no-cache-dir agavepy
ADD example.py /example.py

CMD ["python", "/example.py"]

Now that we have our Dockerfile, we can build our image and push it to Docker Hub. To do so, we use the
docker build and docker push commands [note: user is your user on Docker, you must also $ docker login] :

$ docker build -t user/my_actor .
$ docker push user/my_actor

2.3.3 Registering an Actor

Now we are going to register the Docker image we just built as an Abaco actor. To do this, we will use the Agave
client object we created above (see Working with TACC OAuth).

To register an actor using the agavepy library, we use the actors.add() method and pass the arguments describing
the actor we want to register through the body parameter. For example:

>>> from agavepy.agave import Agave
>>> ag = Agave(api_server='https://api.tacc.utexas.edu', token='<access_token>')

(continues on next page)

2.3. Abaco Quickstart 7

abaco Documentation

(continued from previous page)

>>> my_actor = {"image": "user/my_actor", "name": "word_counter", "description":
→˓"Actor that counts words."}
>>> ag.actors.add(body=my_actor)

You should see a response like this:

{'_links': {'executions': 'https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz/
→˓executions',
'owner': 'https://api.tacc.utexas.edu/profiles/v2/jstubbs',
'self': 'https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz'},
'createTime': '2018-07-03 22:41:29.563024',
'defaultEnvironment': {},
'description': 'Actor that counts words.',
'id': 'O08Nzb3mRA7Bz',
'image': 'abacosamples/wc',
'lastUpdateTime': '2018-07-03 22:41:29.563024',
'mounts': [],
'name': 'word_counter',
'owner': 'jstubbs',
'privileged': False,
'state': {},
'stateless': False,
'status': 'SUBMITTED',
'statusMessage': '',
'type': 'none',
'useContainerUid': False}

Notes:

• Abaco assigned an id to the actor (in this case O08Nzb3mRA7Bz) and associated it with the image (in this case,
abacosamples/wc) which it began pulling from the public Docker Hub.

• Abaco returned a status of SUBMITTED for the actor; behind the scenes, Abaco is starting a worker container
to handle messages passed to this actor. The worker must initialize itself (download the image, etc) before the
actor is ready.

• When the actor’s worker is initialized, the status will change to READY.

At any point we can check the details of our actor, including its status, with the following:

>>> ag.actors.get(actorId='O08Nzb3mRA7Bz')

The response format is identical to that returned from the .add() method.

2.3.4 Executing an Actor

We are now ready to execute our actor by sending it a message. We built our actor to process a raw message string, so
that is what we will send, but there other options, including JSON and binary data. For more details, see the Messages,
Executions, and Logs section.

We send our actor a message using the sendMessage() method:

>>> ag.actors.sendMessage(actorId='O08Nzb3mRA7Bz',
body={'message': 'Actor, please count these words.'})

Abaco queues up an execution for our actor and then responds with JSON, including an id for the execution contained
in the executionId:

8 Chapter 2. Getting Started

abaco Documentation

{'_links': {'messages': 'https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz/messages
→˓',
'owner': 'https://api.tacc.utexas.edu/profiles/v2/jstubbs',
'self': 'https://api.tacc.utexas.edu/actors/v2/O08Nzb3mRA7Bz/executions/

→˓kA1P1m8NkkolK'},
'executionId': 'kA1P1m8NkkolK',
'msg': 'Actor, please count these words.'}

In general, an execution does not start immediately but is instead queued until a future time when a worker for the actor
can take the message and start an actor container with the message. We can retrieve the details about an execution,
including its status, using the getExecution() method:

>>> ag.actors.getExecution(actorId='O08Nzb3mRA7Bz', executionId='kA1P1m8NkkolK')

The response will be similar to the following:

{'_links': {'logs': 'https://api.tacc.utexas.edu/actors/v2/TACC-PROD_O08Nzb3mRA7Bz/
→˓executions/kA1P1m8NkkolK/logs',
'owner': 'https://api.tacc.utexas.edu/profiles/v2/jstubbs',
'self': 'https://api.tacc.utexas.edu/actors/v2/TACC-PROD_O08Nzb3mRA7Bz/executions/

→˓kA1P1m8NkkolK'},
'actorId': 'O08Nzb3mRA7Bz',
'apiServer': 'https://api.tacc.utexas.edu',
'cpu': 0,
'executor': 'jstubbs',
'exitCode': 1,
'finalState': {'Dead': False,
'Error': '',
'ExitCode': 1,
'FinishedAt': '2018-07-03T22:56:30.605256563Z',
'OOMKilled': False,
'Paused': False,
'Pid': 0,
'Restarting': False,
'Running': False,
'StartedAt': '2018-07-03T22:56:30.474917256Z',
'Status': 'exited'},

'id': 'kA1P1m8NkkolK',
'io': 0,
'messageReceivedTime': '2018-07-03 22:56:29.075122',
'runtime': 1,
'startTime': '2018-07-03 22:56:29.558470',
'status': 'COMPLETE',
'workerId': 'e7B3JXDNxM6M0'}

Note that a status of COMPLETE indicates that the execution has finished and we are ready to retrieve our results.

2.3.5 Retrieving the Logs

The Abaco system collects all standard out from an actor execution and makes it available via the logs endpoint.
Let’s retrieve the logs from the execution we just made. We use the getExecutionLogs() method, passing out
actorId and our executionId:

>>> ag.actors.getExecutionLogs(actorId='O08Nzb3mRA7Bz', executionId='kA1P1m8NkkolK')

The response should be similar to the following:

2.3. Abaco Quickstart 9

abaco Documentation

{'_links': {'execution': 'https://api.tacc.utexas.edu/actors/v2/6PlMbDLa4zlON/
→˓executions/kGQk6RRJQBL3',
'owner': 'https://api.tacc.utexas.edu/profiles/v2/jstubbs',
'self': 'https://api.tacc.utexas.edu/actors/v2/6PlMbDLa4zlON/executions/

→˓kGQk6RRJQBL3/logs'},
'logs': 'Number of words is: 5\n'}

We see our actor output Number of words is: 5, which is the expected result!

2.3.6 Conclusion

Congratulations! At this point you have created, registered and executed your first actor, but there is a lot more you
can do with the Abaco system. To learn more about the additional capabilities, please continue on to the Technical
Guide.

10 Chapter 2. Getting Started

CHAPTER 3

Overview

The Technical Guide for Abaco provides a more detailed reference to Abaco’s advanced features.

• Actor Registration: Complete reference for actor registration and management.

• Messages, Executions, and Logs: Covers the different types of messages that can be sent to an Actor.

• Abaco Context & Container Runtime: Full details regarding the context injected into every Abaco actor.

• Actor State: Working with the State API to store state between actor executions.

• Actor Sharing and Nonces: Sharing actors with other users and using nonces to execute actors.

• Search: Using the database search functionality of Abaco.

• API Reference: Complete HTTP API reference.

11

abaco Documentation

12 Chapter 3. Overview

CHAPTER 4

Actor Registration

When registering an actor, the only required field is a reference to an image on the public Docker Hub. However, there
are several other properties that can be set. The following table provides a list of the configurable properties available
to all users and their descriptions.

13

abaco Documentation

Prop-
erty
Name

Description

image The Docker image to associate with the actor. This should be a fully qualified image available on the
public Docker Hub. We encourage users to use to image tags to version control their actors.

name A user defined name for the actor.
de-
scrip-
tion

A user defined description for the actor.

de-
fault_environment

The default environment is a set of key/value pairs to be injected into every execution of the actor. The val-
ues can also be overridden when passing a message to the reactor in the query parameters (see Messages,
Executions, and Logs).

hints A list of strings representing user-defined “tags” or metadata about the actor. “Official” Abaco hints can
be applied to control configurable aspects of the actor runtime, such as the autoscaling algorithm used.
(see Autoscaling Actors).

link Actor identifier (id or alias) of an actor to “link” this actor’s events to. Requires execute permissions on
the linked actor, and cycles are not permitted. (see Networks of Actors).

privi-
leged

(True/False) - Whether the actor runs in privileged mode and has access to the Docker daemon. Note:
Setting this parameter to True requires elevated permissions.

state-
less

(True/False) - Whether the actor stores private state as part of its execution. If True, the state API will not
be available, but in a future release, the Abaco service will be able to automatically scale reactor processes
to execute messages in parallel. The default value is False.

token (True/False) - Whether to generate an OAuth access token for every execution of this actor. Generating
an OAuth token add about 500 ms of time to the execution start up time.
*Note: the default value for the token attribute varies from tenant to tenant. Always explicitly set the
token attribute when registering new actors to ensure the proper behavior.

use_container_uidRun the actor using the UID/GID set in the Docker image. Note: Setting this parameter to True requires
elevated permissions.

web-
hook

URL to publish this actor’s events to. (see Networks of Actors).

log_ex Configure the amount of time that your logs will exist, in minutes.
cron_scheduleCreate a schedule to automatically execute your actor (see Messages, Executions, and Logs).
cron_on A switch to turn your cron schedule on or off

4.1 Notes

• The default_environment can be used to provide sensitive information to the actor that cannot be put in
the image.

• In order to execute privileged actors or to override the UID/GID used when executing an actor container, talk to
the Abaco development team about your use case.

• Abaco supports running specific actors within a given tenant on dedicated and/or specialized hardware for
performance reasons. It accomplishes this through the use of actor queues. If you need to run actors on
dedicated resources, talk to the Abaco development team about your use case.

14 Chapter 4. Actor Registration

abaco Documentation

4.2 Examples

4.2.1 curl

Here is an example using curl; note that to set the default environment, we must pass content type application/
json and be sure to pass properly formatted JSON in the payload.

$ curl -H "Authorization: Bearer $TOKEN" \
-H "Content-Type: application/json" \
-d '{"image": "abacosamples/test", "name": "test", "description": "My test actor
→˓using the abacosamples image.", "default_environment":{"key1": "value1", "key2":
→˓"value2"} }' \
https://api.tacc.utexas.edu/actors/v2

4.2.2 Python

To register the same actor using the agavepy library, we use the actors.add()method and pass the same arguments
through the body parameter. In this case, the default_environment is just a standard Python dictionary where
the keys and values are str type. For example,

>>> from agavepy.agave import Agave
>>> ag = Agave(api_server='https://api.tacc.utexas.edu', token='<access_token>')
>>> actor = {"image": "abacosamples/test",

"name": "test",
"description": "My test actor using the abacosamples image registered

→˓using agavepy.",
"default_environment":{"key1": "value1", "key2": "value2"} }

>>> ag.actors.add(body=actor)

4.2. Examples 15

abaco Documentation

16 Chapter 4. Actor Registration

CHAPTER 5

Abaco Context & Container Runtime

In this section we describe the environment that Abaco actor containers can utilize during their execution.

5.1 Context

When an actor container is launched, Abaco injects information about the execution into a number of environment
variables. This information is collectively referred to as the context. The following table provides a complete list
of variable names and their description:

Variable Name Description
_abaco_actor_id The id of the actor.
_abaco_actor_dbid The Abaco internal id of the actor.
_abaco_container_repo The Docker image used to launch this actor container.
_abaco_worker_id The id of the worker for the actor overseeing this execution.
_abaco_execution_id The id of the current execution.
_abaco_access_token An OAuth2 access token representing the user who registered the actor.
_abaco_api_server The OAuth2 API server associated with the actor.
_abaco_actor_state The value of the actor’s state at the start of the execution.
_abaco_Content_Type The data type of the message (either ‘str’ or ‘application/json’).
_abaco_username The username of the “executor”, i.e., the user who sent the message.
_abaco_api_server The base URL for the Abaco API service.
MSG The message sent to the actor, as a raw string.

5.1.1 Notes

• The _abaco_actor_dbid is unique to each actor. Using this id, an actor can distinguish itself from other
actors registered with the same function providing for SPMD techniques.

• The _abaco_access_token is a valid OAuth token that actors can use to make authenticated requests to
other TACC Cloud APIs during their execution.

17

abaco Documentation

• The actor can update its state during the course of its execution; see the section Actor State for more details.

• The “executor” of the actor may be different from the owner; see Actor Sharing and Nonces for more details.

5.1.2 Access from Python

The agavepy.actors module provides access to the above data in native Python objects. Currently, the actors
module provides the following utilities:

• get_context() - returns a Python dictionary with the following fields:

– raw_message - the original message, either string or JSON depending on the Contetnt-Type.

– content_type - derived from the original message request.

– message_dict - A Python dictionary representing the message (for Content-Type: applica-
tion/json)

– execution_id - the ID of this execution.

– username - the username of the user that requested the execution.

– state - (for stateful actors) state value at the start of the execution.

– actor_id - the actor’s id.

• get_client() - returns a pre-authenticated agavepy.Agave object.

• update_state(val) - Atomically, update the actor’s state to the value val.

5.2 Runtime Environment

The environment in which an Abaco actor container runs has been built to accommodate a number of typical use cases
encountered in research computing in a secure manner.

5.2.1 Container UID and GID

When Abaco launches an actor container, it instructs Docker to execute the process using the UID and GID associated
with the TACC account of the owner of the actor. This practice guarantees that an Abaco actor will have exactly the
same accesses as the original author of the actor (for instance, access to files or directories on shared storage) and that
files created or updated by the actor process will be owned by the underlying API user. Abaco API users that have
elevated privilleges within the platform can override the UID and GID used to run the actor when registering the actor
(see Actor Registration).

5.2.2 POSIX Interface to the TACC WORK File System

When Abaco launches an actor container, it mounts the actor owner’s TACC WORK file system into the running
container. The owner’s work file system is made available at /work with the container. This gives the actor a POSIX
interface to the work file system.

18 Chapter 5. Abaco Context & Container Runtime

CHAPTER 6

Messages, Executions, and Logs

Once you have an Abaco actor created the next logical step is to send this actor some type of job or message detailing
what the actor should do. The act of sending an actor information to execute a job is called sending a message. This
sent message can be raw string data, JSON data, or a binary message.

Once a message is sent to an Abaco actor, the actor will create an execution with a unique execution_id tied to it
that will show results, time running, and other stats which will be listed below. Executions also have logs, and when
the log are called for, you’ll receive the command line logs of your running execution. Akin to what you’d see if you
and outputted a script to the command line. Details on messages, executions, and logs are below.

Note: Due to each message being tied to a specific execution, each execution will have exactly one message that can
be processed.

6.1 Messages

A message is simply the message given to an actor with data that can be used to run the actor. This data can be in the
form of a raw message string, JSON, or binary. Once this message is sent, the messaged Abaco actor will queue an
execution of the actor’s specified image.

Once off the queue, if your specified image has inputs for the messaged data, then that messaged data will be visible
to your program. Allowing you to set custom parameters or inputs for your executions.

6.1.1 Sending a message

cURL

To send a message to the messages endpoint with cURL, you would do the following:

$ curl -H "Authorization: Bearer $TOKEN" \
-d "message=<your content here>" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/messages

19

abaco Documentation

Python

To send a message to the messages endpoint with AgavePy and Python, you would do the following:

ag.actors.sendMessage(actorId='<actor_id>',
body={'message':'<your content here>'})

Results

These calls result in a JSON list similar to the following:

{'message': 'The request was successful',
'result': {'_links': {'messages': 'https://api.tacc.utexas.edu/actors/v2/
→˓R0y3eYbWmgEwo/messages',

'owner': 'https://api.tacc.utexas.edu/profiles/v2/apitest',
'self': 'https://api.tacc.utexas.edu/actors/v2/R0y3eYbWmgEwo/executions/

→˓00wLaDX53WBAr'},
'executionId': '00wLaDX53WBAr',
'msg': '<your content here>'},

'status': 'success',
'version': '0.11.0'}

6.1.2 Get message count

It is possible to retrieve the current number of messages an actor has with the messages end point.

cURL

The following retrieves the current number of messages an actor has:

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/messages

Python

To retrieve the current number of messages with AgavePy the following is done:

ag.actors.getMessages(actorId='<actor_id>')

Results

The result of getting the messages endpoint should be similar to:

{'message': 'The request was successful',
'result': {'_links': {'owner': 'https://api.tacc.utexas.edu/profiles/v2/cgarcia',
'self': 'https://api.tacc.utexas.edu/actors/v2/R4OR3KzGbRQmW/messages'},
'messages': 12},

'status': 'success',
'version': '0.11.0'}

20 Chapter 6. Messages, Executions, and Logs

abaco Documentation

6.1.3 Binary Messages

An additional feature of the Abaco message system is the ability to post binary data. This data, unlike raw string
data, is sent through a Unix Named Pipe (FIFO), stored at /_abaco_binary_data, and can be retrieved from within the
execution using a FIFO message reading function. The ability to read binary data like this allows our end users to do
numerous tasks such as reading in photos, reading in code to be ran, and much more.

The following is an example of sending a JPEG as a binary message in order to be read in by a TensorFlow image
classifier and being returned predicted image labels. For example, sending a photo of a golden retriever might yield,
80% golden retriever, 12% labrador, and 8% clock.

This example uses Python and AgavePy in order to keep code in one script.

Python with AgavePy

Setting up an AgavePy object with token and API address information:

from agavepy.agave import Agave
ag = Agave(api_server='https://api.tacc.utexas.edu',

username='<username>', password='<password>',
client_name='JPEG_classifier',
api_key='<api_key>',
api_secret='<api_secret>')

ag.get_access_token()
ag = Agave(api_server='https://api.tacc.utexas.edu/', token=ag.token)

Creating actor with the TensorFlow image classifier docker image:

my_actor = {'image': 'notchristiangarcia/bin_classifier',
'name': 'JPEG_classifier',
'description': 'Labels a read in binary image'}

actor_data = ag.actors.add(body=my_actor)

The following creates a binary message from a JPEG image file:

with open('<path to jpeg image here>', 'rb') as file:
binary_image = file.read()

Sending binary JPEG file to actor as message with the application/octet-stream header:

result = ag.actors.sendMessage(actorId=actor_data['id'],
body={'binary': binary_image},
headers={'Content-Type': 'application/octet-stream'})

The following returns information pertaining to the execution:

execution = ag.actors.getExecution(actorId=actor_data['id'],
executionId = result['executionId'])

Once the execution has complete, the logs can be called with the following:

exec_info = requests.get('{}/actors/v2/{}/executions/{}'.format(url, actor_id, exec_
→˓id),

headers={'Authorization': 'Bearer {}'.format(token)})

6.1. Messages 21

abaco Documentation

6.1.4 Sending binary from execution

Another useful feature of Abaco is the ability to write to a socket connected to an Abaco endpoint from within an
execution. This Unix Domain (Datagram) socker is mounted in the actor container at /_abaco_results.sock.

In order to write binary data this socket you can use AgavePy functions, in particular the send_bytes_result()
function that sends bytes as single result to the socket. Another useful function is the send_python_result()
function that allows you to send any Python object that can be pickled with cloudpickle.

In order to retrieve these results from Abaco you can get the /actor/<actor_id>/executions/
<execution_id>/results endpoint. Each get of the endpoint will result in exactly one result being popped
and retrieved. An empty result with be returned if the results queue is empty.

As a socket, the maximum size of a result is 131072 bytes. An execution can send multiple results to the socket and
said results will be added to a queue. It is recommended to to return a reference to a file or object store.

As well, results are sent to the socket and available immediately, an execution does not have to complete to pop a
result. Results are given an expiry time of 60 minutes from creation.

cURL

To retrieve a result with cURL you would do the following:

$ curl -H "Authorization: Bearer $TOKEN" \
-d "message=<your content here>" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/executions/<execution_id>/results

6.1.5 Synchronous Messaging

Important: Support for Synchronous Messaging was added in version 1.1.0.

Starting with 1.1.0, Abaco provides support for sending a synchronous message to an actor; that is, the client sends
the actor a message and the request blocks until the execution completes. The result of the execution is returned as an
HTTP response to the original message request.

Synchronous messaging prevents the client from needing to poll the executions endpoint to determine when an exe-
cution completes. By eliminating this polling and returning the response as soon as it is ready, the overall latency is
minimized.

While synchronous messaging can simplify client code and improve performance, it introduces some additional chal-
lenges. Primarily, if the execution cannot be completed within the HTTP request/response window, the request will
time out. This window is usually about 30 seconds.

Warning: Abaco strictly adheres to message ordering and, in particular, synchronous messages do not skip to the
front of the actor’s message queue. Therefore, a synchronous message and all queued messages must be processed
within the HTTP timeout window. To avoid excessive synchronous message requests, Abaco will return a 400
level request if the actor already has more than 3 queued messages at the time of the synchronous message request.

To send a synchronous message, the client appends _abaco_synchronous=true query parameter to the request; the rest
of the messaging semantics follows the rules and conventions of asynchronous messages.

22 Chapter 6. Messages, Executions, and Logs

abaco Documentation

cURL

The following example uses the curl command line client to send a synchronous message:

$ curl -H "Authorization: Bearer $TOKEN" \
-d "message=<your content here>" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/messages?_abaco_synchronous=true

As stated above, the request blocks until the execution (and all previous executions queued for the actor) completes.
To make the response to a synchronous message request, Abaco uses the following rules:

1. If a (binary) result is registered by the actor for the execution, that result is returned with along with a content-
type application/octet-stream.

2. If no result is available when the execution completes, the logs associated with the execution are returned with
content-type text/html (charset utf8 is assumed).

6.2 Executions

Once you send a message to an actor, that actor will create an execution for the actor with the inputted data. This
execution will be queued waiting for a worker to spool up or waiting for a worker to be freed. When the execution is
initially created it is given an execution_id so that you can access information about it using the execution_id endpoint.

6.2.1 Access execution data

cURL

You can access the execution_id endpoint using cURL with the following:

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/executions/<execution_id>

Python

You can access the execution_id endpoint using AgavePy and Python with the following:

ag.actors.getExecution(actorId='<actor_id>',
executionId='<execution_id>')

Results

Access the execution_id endpoint will result in something similar to the following:

{'message': 'Actor execution retrieved successfully.',
'result': {'_links': {'logs': 'https://api.tacc.utexas.edu/actors/v2/R0y3eYbWmgEwo/
→˓executions/00wLaDX53WBAr/logs',

'owner': 'https://api.tacc.utexas.edu/profiles/v2/apitest',
'self': 'https://api.tacc.utexas.edu/actors/v2/R0y3eYbWmgEwo/executions/

→˓00wLaDX53WBAr'},
'actorId': 'R0y3eYbWmgEwo',
'apiServer': 'https://api.tacc.utexas.edu',

(continues on next page)

6.2. Executions 23

abaco Documentation

(continued from previous page)

'cpu': 7638363913,
'executor': 'apitest',
'exitCode': 1,
'finalState': {'Dead': False,
'Error': '',
'ExitCode': 1,
'FinishedAt': '2019-02-21T17:32:18.56680737Z',
'OOMKilled': False,
'Paused': False,
'Pid': 0,
'Restarting': False,
'Running': False,
'StartedAt': '2019-02-21T17:32:14.893485694Z',
'Status': 'exited'},
'id': '00wLaDX53WBAr',
'io': 124776656,
'messageReceivedTime': '2019-02-21 17:31:24.300900',
'runtime': 11,
'startTime': '2019-02-21 17:32:12.798836',
'status': 'COMPLETE',
'workerId': 'oQpeybmGRVNyB'},

'status': 'success',
'version': '0.11.0'}

6.2.2 List executions

Abaco allows users to retrieve all executions tied to an actor with the executions endpoint.

cURL

List executions with cURL by getting the executions endpoint

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/executions

Python

To list executions with AgavePy the following is done:

ag.actors.listExecutions(actorId='<actor_id>')

Results

Calling the list of executions should result in something similar to:

{'message': 'Actor execution retrieved successfully.',
'result': {'_links': {'logs': 'https://api.tacc.utexas.edu/actors/v2/R4OR3KzGbRQmW/
→˓executions/YqM3RPRoWqz3g/logs',

'owner': 'https://api.tacc.utexas.edu/profiles/v2/apitest',
'self': 'https://api.tacc.utexas.edu/actors/v2/R4OR3KzGbRQmW/executions/

→˓YqM3RPRoWqz3g'},

(continues on next page)

24 Chapter 6. Messages, Executions, and Logs

abaco Documentation

(continued from previous page)

'actorId': 'R4OR3KzGbRQmW',
'apiServer': 'https://api.tacc.utexas.edu',
'cpu': 0,
'executor': 'apitest',
'id': 'YqM3RPRoWqz3g',
'io': 0,
'messageReceivedTime': '2019-02-22 01:01:50.546993',
'runtime': 0,
'startTime': 'None',
'status': 'SUBMITTED'},

'status': 'success',
'version': '0.11.0'}

6.2.3 Reading message in execution

One of the most important parts of using data in an execution is reading said data. Retrieving sent data depends on the
data type sent.

Python - Reading in raw string data or JSON

To retrieve JSON or raw data from inside of an execution using Python and AgavePy, you would get the message
context from within the actor and then get it’s raw_message field.

from agavepy.actors import get_context

context = get_context()
message = context['raw_message']

Python - Reading in binary

Binary data is transmitted to an execution through a FIFO pipe located at /_abaco_binary_data. Reading from a pipe
is similar to reading from a regular file, however AgavePy comes with an easy to use get_binary_message()
function to retrieve the binary data.

Note: Each Abaco execution processes one message, binary or not. This means that reading from the FIFO pipe will
result with exactly the entire sent message.

from agavepy.actors import get_binary_message

bin_message = get_binary_message()

6.2.4 Cron Schedule

Note: The Abaco Cron Schedule feature was implemented in version 1.7.0.

Abaco’s cron schedule is a tool to automatically execute your actor based on a schedule. Each actor has two user-
defined parameters associated with the cron execution: cronSchedule and cronOn. The scheduler has another
variable, cronNextEx, which holds the next execution time of the actor. This is an internal variable and cannot be

6.2. Executions 25

abaco Documentation

edited by users. To create a schedule, set the cronSchedule parameter when registering a new actor or updating an
existing actor. The value of cronSchedule should be a string in the following format:

yyyy-mm-dd hh + <number> <unit of time>

where the first part is the datetime when the first execution will happen, and the second part is the time increment for
each subsequent execution. Note that the spaces, plus characters (+) and dash characters (-) in the template above are
meaningful and are a required part of the format. Abaco’s cron schedule also has an alias called now, which lets you
execute the actor at the current UTC time. For example, if an actor was registered with this schedule

"cronSchedule": "now + 1 hour"

the actor would execute at the current time, and then again at the top of the hour every hour.

Note: The highest granularity is the hour, and the units of time that can be used are hour, day, week, and month.

To create an actor with a schedule, make a request like the following:

$ curl -H "Authorization: Bearer $TOKEN" \
-H "Content-Type: application/json" \
-d '{"image": "abacosamples/test", "cronSchedule": "2020-09-28 16 + 1 hour"}' \
https://api.tacc.utexas.edu/actors/v2

To update the schedule, make a request like the following:

$ curl -H "Authorization: Bearer $TOKEN" \
-X PUT \
-H "Content-Type: application/json" \
-d '{"image": "abacosamples/test", "cronSchedule": "2020-12-11 16 + 3 days"}' \
https://api.tacc.utexas.edu/actors/v2/<actor_id>

This last request above will update the cron schedule for the actor with id <actor_id> as follows: the actor will
be scheduled to automatically execute on December 11th, 2020 at 4 pm, UTC timezone. That actor will be executed
again 3 days later on the 14th, at 4pm, and then 3 days after that, again at 4pm. This execution will recur every 3 days
until the user changes the cron schedule, turns off the cron schedule, or deletes the actor.

Note: The cron schedule runs on the UTC timezone.

Note: When making requests to set the cronSchedule, be sure to pass “application/json” content to avoid issues
requiring escaping characters inside the schedule value.

To turn off the schedule, use the cronOn switch like so:

$ curl -H "Authorization: Bearer $TOKEN" \
-X PUT \
-H "Content-Type: application/json" \
-d '{"image": "abacosamples/test", "cronOn": "False"}' \
https://api.tacc.utexas.edu/actors/v2/<actor_id>

By turning off the schedule, the actor will no longer execute itself at each increment. You can turn it on again at any
time, and the actor will resume incrementing as before. For example, if an actor is set to execute every hour, and then
the cron switch is turned off, the actor will stop executing itself. After a week, the switch can be turned back on, and
the actor will resume executing on the hour.

26 Chapter 6. Messages, Executions, and Logs

abaco Documentation

Cron Schedule - Error Messages

If users supply a value for cronSchedule in an incorrect format, they will receive an error letting them know to check
the format. The API also checks that the schedule sent in has not already past. For example, if you pass in the year
1955, you will get an error message saying the cron schedule has already passed. The error message will also tell you
the current UTC time for reference.

Cron Message and Execution

When it is time to execute an actor configured with a cronSchedule, Abaco’s internal cron agent simply queues a
message on the actor’s internal message queue, just as if a client had sent a message to the actor using the /messages
API. If the actor already has (unprocessed) messages in its queue, these messages will be processed first before the
cron message. This means that there could be some delay between the time Abaco internally queues the message and
the actor starts executing it.

Currently, the cron message sent to the actor is the static string

This is your cron execution

Accordingly, the _abaco_Content_Type context variable is set to str. The rest of the context variables are set
normally, as described in Abaco Context & Container Runtime.

6.3 Logs

At any point of an execution you are also able to access the execution logs using the logs endpoint. This returns
information about the log along with the log itself. If the execution is still in the submitted phase, then the log will be
an empty string, but once the execution is in the completed phase the log would contain all outputted command line
data.

6.3.1 Retrieving an executions logs

cURL

To call the log endpoint using cURL, do the following:

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/executions/<execution_id>/logs

Python

To call the log endpoint using AgavePy and Python, do the following:

ag.actors.getExecutionLogs(actorId='<actor_id>',
executionId='<executionId>')

6.3. Logs 27

abaco Documentation

Results

This would result in data similar to the following:

{'message': 'Logs retrieved successfully.',
'result': {'_links': {'execution': 'https://api.tacc.utexas.edu/actors/v2/
→˓qgKRpNKxg0DME/executions/qgmq08wKARlg3',

'owner': 'https://api.tacc.utexas.edu/profiles/v2/apitest',
'self': 'https://api.tacc.utexas.edu/actors/v2/qgKRpNKxg0DME/executions/

→˓qgmq08wKARlg3/logs'},
'logs': '<command line output here>'},

'status': 'success',
'version': '0.11.0'}

28 Chapter 6. Messages, Executions, and Logs

CHAPTER 7

Search

With the release of Abaco 1.6.0, a search capability has been introduced using the Mongo aggregation system, full-text
searching, and indexing. Searching can be done on actor, worker, execution, and log collections. This feature allows
users to search based on any attribute associated with resources that they have permission to view. For example, using
search, a user could retrieve all viewable executions with status “ERROR” in one API call. The search currently makes
use of logical operators and datetime to allow for easy searching of any object based on any specific field.

Attention: Search in Abaco was implemented in version 1.6.0.

Search has been implemented via query parameters on a new /search/<collection> endpoint. To use it, specify
the collection to be searched (actors, workers, executions, or logs) in the URL. With no query arguments
Abaco will return all entries in the collection that you have permission to view. To specify query arguments, add a ?
to the end of the url and specify the parameters in form <attribute_name>.<operator>=<param_value>
separated by &. If not specified, the search defaults the operator to the equality operator (i.e., the eq operator). The
general form for requests to the search endpoint looks like:

GET /actors/v2/search/<collection>?<attr_1>.<op_1>=<value_1>&<attr_2>.<op_2>=<value_2>
→˓&...

where <attr_1>, <attr_2>, etc. are valid attributes on an instance of <collection> (for example, image
for the actors collection), <op_1>, <op_2>, etc. are valid Abaco search operators (see table below), and
<value_1>, <value_2>, etc. are values for the attribute type. The response from a search consists of the list
of objects of type <collection> that meet the search criteria and that the caller has view access to.

The same query parameters can also be used on the following existing endpoints:

Endpoint Description
/actors Search all actors; equivalent to /search/actors
/actors/{aid}/executions Search all executions for a fixed actor.
/actors/{aid}/executions/{eid}/logs Search logs for a specific execution.
/actors/{aid}/workers Search all workers for a fixed actor.

29

abaco Documentation

When applied to one of the existing endpoints above, the query parameters can be thought of as filters, refining the set
of objects that would have been returned by the listing.

A table of valid operator parameters, their function, and examples are below.

Op-
era-
tor

Function Examples

eq Checks if given value is equal to db value matching given key. This
is the default operator.

?id.eq=AKY5o4Z847lB3

neq Checks if given value is not equal to db value matching given key. ?id.neq=AKY5o4Z847lB3
gt Checks if given value is greater than db value matching given key. ?start_time.gt=2020-04-29+06:00
gte Checks if given value is greater than or equal to db value matching

given key.
?runtime.gte=423

lt Checks if given value is less than db value matching given key. ?message_received_time.lt=2020
lte Checks if given value is less than or equal to db value matching

given key.
?final_state.FinishedAt.lte=2020-
04-29

in Checks if db value matching given key match any values in the
given list of values.

?sta-
tus.in=[“BUSY”,”REQUESTED”,”READY”]

nin Checks if db value matching given key does not match any values
in the given list of values.

?status.nin=[“COMPLETED”,
“READY”]

like Checks if given value in (through regex) db value matching given
key.

?im-
age.like=abaco_docker_username

nlike Checks if given value not in (through regex) db value matching
given key.

?image.nlike=abaco_test

be-
tween

Checks if db value matching given key is greater than or equal to
first given value, and less than or equal to second given value.

?start_time.between= 2020-04-
29T20:15:52:246Z, 2021-06-24-
05:00

limit Sets a limit on total amount of results returned. Defaults to 10
results.

?limit=20

skip Skips a specified amount of results when returning. ?skip=4

Additionally, the Abaco search supports the following special parameters

Param-
eter

Function Examples

search Completes a fuzzy full-text search based on inputs. Returns results by
best accuracy/score.

?search=stringToSearchFor

exact-
search

Completes a full-text search and looks for exact matches with inputs. ?exact-
search=stringToMatchExactly

limit Limit the number of results to return. ?limit=5
skip The number of results to skip. ?skip=10

You may use as many search parameters as you want in one query sans limit and skip, where each may only be
used once.

7.1 Metadata

Abaco formats the responses to searches slightly differently from a typical response in the fact that the response
to a search returns two objects within the result object: a search object, containing the actual results, and a

30 Chapter 7. Search

abaco Documentation

_metadata object. The _metadata object returns pertinent information about the amount of records returned, the
amount of records the return is limited to, the amount of records skipped (specified in query), and the total amount
of records that match the query searched for. This is useful to implement paging or to only receive a set amount of
records.

Important: A search result object contains a _metadata object and a search object, the latter is a JSON list
containing the actual search results.

7.1.1 Example of a Search Response

{'message': 'Executions search completed successfully.',
'result': {'_metadata': {'countReturned': 1,

'recordLimit': 10,
'recordsSkipped': 0,
'totalCount': 1},

'search': [{'_links': {'logs': 'https://dev.tenants.aloedev.tacc.cloud/
→˓actors/v2/joBjeDkWyBwLx/logs',

'owner': 'https://dev.tenants.aloedev.tacc.cloud/
→˓profiles/v2/testuser',

'self': 'https://dev.tenants.aloedev.tacc.cloud/
→˓actors/v2/joBjeDkWyBwLx/executions/1JKkQwX75vE56'},

'actorId': 'joBjeDkWyBwLx',
'cpu': 444097006,
'executor': 'testuser',
'exitCode': 0,
'finalState': {'Dead': False,

'Error': '',
'ExitCode': 0,
'FinishedAt': '2020-04-29T21:47:21.385Z',
'OOMKilled': False,
'Paused': False,
'Pid': 0,
'Restarting': False,
'Running': False,
'StartedAt': '2020-04-29T21:47:19.382Z',
'Status': 'exited'},

'id': '1JKkQwX75vE56',
'io': 716,
'messageReceivedTime': '2020-04-29T21:47:18.7Z00',
'runtime': 2,
'startTime': '2020-04-29T21:47:18.954Z',
'status': 'COMPLETE',
'workerId': '7kvAAKYKB6Qk6'}]},

'status': 'success',
'version': ':dev'}

7.2 Inputs

All inputs are given to the search function as query parameters and thus are transmitted as strings. Abaco attempts to
convert these inputs to the native type associated with the attribute. Strings are left untouched. Booleans are expected
to be “False” or “false” and “True” or “true” to be converted. Numbers are all converted to floats. Lists are parsed

7.2. Inputs 31

abaco Documentation

with json.loads and will accept either ["test"] or ['test'] with post-processing on Abaco’s end to convert
to lists.

The last consumed input type is datetime objects. Abaco accepts a broad range of ISO 8601 like
strings. An example of the most detailed string accepted is 2020-04-29T20:15:52:246252-06:00.
2020-04-29T20:15:52:246Z, 2020-04-29T20:15:52-06:00, 2020-04-29T20:15-06:00,
2020-04-29T20-06:00, 2020-04-29-06:00, 2020-04Z, and 2020 are also acceptable.

Attention: Abaco stores all times in UTC, so addition of your timezone or conversion to UTC is important. If no
timezone information is given (-06:00 or Z (to signal UTC)) the datetime is assumed to be in UTC.

Important: For the purposes of comparison, unspecified elements of a datetime string are set to the minimal
possible value. For example, the string “2020-12-30” is greater than “2020-12” which in turn is greater than
“2020”. As datetime objects, these are converted to 2020-12-30T00:00:00Z, 2020-12-01T00:00:00Z and
2020-01-01T00:00:00Z, respectively. This holds true until you reach millisecond accurate time.

Note that use of nonces is limited to searching within the actor or alias the nonce was created for. Abaco does not
allow the use of nonce on the global search enpoint.

Important: Nonces can be used along side search query parameters by setting the x-nonce parameter as usual;
queries should still work as expected and do not need any additional modification. Searches using a nonce count as a
nonce “use” as with any other API call using a nonce.

7.2.1 Creating ISO 8601 formatted strings

The following examples may be helpful for working with datetime objects in Python.

7.2.2 Python - String with Timezone

The following gets the current time as an ISO 8601 formatted string with timezone:

import datetime
import pytz

austin_time_zone = pytz.timezone("America/Chicago")
isoString = datetime.datetime.now(tz=austin_time_zone).isoformat()
print(isoString)

This prints 2020-04-29T16:21:34.602078-05:00.

7.2.3 Python - UTC String

The following gets the current UTC time as an ISO 8601 formatted string:

import datetime

isoString = datetime.datetime.utcnow().isoformat()
print(isoString)

32 Chapter 7. Search

abaco Documentation

This prints 2020-04-29T21:21:34.602078. Feel free to add the Z or leave it absent.

7.3 Search Examples

In this section we provide some example searches using the new search endpoint as well as query parameters applied
to some existing endpoints.

1. Use the new search endpoint to search for all actors defined with image “abacosamples/test”, created since 4/29/2020
and in either “READY” or “BUSY” status:

7.3.1 cURL

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/search/actors?image=abacosamples/test&create_
→˓time.gt=2020-04-29&status.in=["READY", "BUSY"]

7.3.2 Result

{'message': 'Search completed successfully.',
'result': {'_metadata': {'countReturned': 1,

'recordLimit': 10,
'recordsSkipped': 0,
'totalCount': 1},

'search': [{'_links': {'executions': 'https://dev.tenants.aloedev.tacc.
→˓cloud/actors/v2/joBjeDkWyBwLx/executions',

'owner': 'https://dev.tenants.aloedev.tacc.cloud/
→˓profiles/v2/testuser',

'self': 'https://dev.tenants.aloedev.tacc.cloud/
→˓actors/v2/joBjeDkWyBwLx'},

'createTime': '2020-04-29T21:46:53.393Z',
'defaultEnvironment': {'default_env_key1': 'default_env_value1

→˓',
'default_env_key2': 'default_env_value2'},

'description': '',
'gid': None,
'hints': [],
'id': 'joBjeDkWyBwLx',
'image': 'abacosamples/test',
'lastUpdateTime': '2020-04-29T21:46:53.393Z',
'link': '',
'maxCpus': None,
'maxWorkers': None,
'memLimit': None,
'mounts': [{'container_path': '/_abaco_data1',

'host_path': '/data1',
'mode': 'ro'}],

'name': 'abaco_test_suite_default_env',
'owner': 'testuser',
'privileged': False,
'queue': 'default',

(continues on next page)

7.3. Search Examples 33

abaco Documentation

(continued from previous page)

'state': {},
'stateless': True,
'status': 'READY',
'statusMessage': ' ',
'tasdir': None,
'token': 'false',
'type': 'none',
'uid': None,
'useContainerUid': False,
'webhook': ''}]},

'status': 'success',
'version': ':dev'}

2. Use the global search endpoint to look for all executions that are not in COMPLETE status across all actors the user
has access to.

7.3.3 cURL

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/search/executions?status.neq="COMPLETE"

7.3.4 Result

{
"message": "Search completed successfully.",
"result": {
"_metadata": {

"countReturned": 4,
"recordLimit": 100,
"recordsSkipped": 0,
"totalCount": 4

},
"search": [

{
"_links": {
"logs": "https://api.tacc.utexas.edu/actors/v2/7zxX7DlZ0eeZY/logs",
"owner": "https://api.tacc.utexas.edu/profiles/v2/testuser",
"self": "https://api.tacc.utexas.edu/actors/v2/7zxX7DlZ0eeZY/executions/

→˓8mzXG1vxDaZZ1"
},
"actorId": "7zxX7DlZ0eeZY",
"cpu": 0,
"executor": "testuser",
"exitCode": null,
"finalState": null,
"id": "8mzXG1vxDaZZ1",
"io": 0,
"messageReceivedTime": "2020-05-05T19:50:23.813Z",
"runtime": 0,
"startTime": null,
"status": "SUBMITTED",
"workerId": null

},

(continues on next page)

34 Chapter 7. Search

abaco Documentation

(continued from previous page)

{
"_links": {
"logs": "https://api.tacc.utexas.edu/actors/v2/7zxX7DlZ0eeZY/logs",
"owner": "https://api.tacc.utexas.edu/profiles/v2/testuser",
"self": "https://api.tacc.utexas.edu/actors/v2/7zxX7DlZ0eeZY/executions/

→˓7mYv7rxYNNYw1"
},
"actorId": "7zxX7DlZ0eeZY",
"cpu": 0,
"executor": "testuser",
"exitCode": null,
"finalState": null,
"id": "7mYv7rxYNNYw1",
"io": 0,
"messageReceivedTime": "2020-05-05T19:50:23.296Z",
"runtime": 0,
"startTime": null,
"status": "RUNNING",
"workerId": "1zLYaONZxWQAX"

},
{

"_links": {
"logs": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/logs",
"owner": "https://api.tacc.utexas.edu/profiles/v2/testuser",
"self": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/executions/

→˓jg0oLKJg8VvgM"
},
"actorId": "jm6kjmDmW885N",
"cpu": 0,
"executor": "testuser",
"exitCode": null,
"finalState": null,
"id": "jg0oLKJg8VvgM",
"io": 0,
"messageReceivedTime": "2020-05-05T19:50:20.113Z",
"runtime": 0,
"startTime": null,
"status": "RUNNING",
"workerId": "7XZN4aqvzoJ33"

},
{

"_links": {
"logs": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/logs",
"owner": "https://api.tacc.utexas.edu/profiles/v2/testuser",
"self": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/executions/

→˓jgM7JBmqDDjM5"
},
"actorId": "jm6kjmDmW885N",
"cpu": 0,
"executor": "testuser",
"exitCode": null,
"finalState": null,
"id": "jgM7JBmqDDjM5",
"io": 0,
"messageReceivedTime": "2020-05-05T19:50:20.925Z",
"runtime": 0,
"startTime": null,

(continues on next page)

7.3. Search Examples 35

abaco Documentation

(continued from previous page)

"status": "SUBMITTED",
"workerId": null

}
]

},
"status": "success",
"version": "1.6.0"

}

3. Find all executions for actor jm6kjmDmW885N that completed after “2020-05-05T19:50:23.748”.

7.3.5 cURL

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/executions?status=COMPLETE&start_
→˓time.gt=2020-05-05T19:50:23.748

7.3.6 Result

{
"message": "Executions search completed successfully.",
"result": {
"_metadata": {

"countReturned": 2,
"recordLimit": 100,
"recordsSkipped": 0,
"totalCount": 2

},
"search": [

{
"_links": {
"logs": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/logs",
"owner": "https://api.tacc.utexas.edu/profiles/v2/testuser",
"self": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/executions/

→˓jg0oLKJg8VvgM"
},
"actorId": "jm6kjmDmW885N",
"cpu": 159212854,
"executor": "testuser",
"exitCode": 0,
"finalState": {
"Dead": false,
"Error": "",
"ExitCode": 0,
"FinishedAt": "2020-05-05T19:50:29.038Z",
"OOMKilled": false,
"Paused": false,
"Pid": 0,
"Restarting": false,
"Running": false,
"StartedAt": "2020-05-05T19:50:27.003Z",
"Status": "exited"

},

(continues on next page)

36 Chapter 7. Search

abaco Documentation

(continued from previous page)

"id": "jg0oLKJg8VvgM",
"io": 266,
"messageReceivedTime": "2020-05-05T19:50:20.113Z",
"runtime": 2,
"startTime": "2020-05-05T19:50:26.697Z",
"status": "COMPLETE",
"workerId": "7XZN4aqvzoJ33"

},
{

"_links": {
"logs": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/logs",
"owner": "https://api.tacc.utexas.edu/profiles/v2/testuser",
"self": "https://api.tacc.utexas.edu/actors/v2/jm6kjmDmW885N/executions/

→˓jgM7JBmqDDjM5"
},
"actorId": "jm6kjmDmW885N",
"cpu": 172730092,
"executor": "testuser",
"exitCode": 0,
"finalState": {
"Dead": false,
"Error": "",
"ExitCode": 0,
"FinishedAt": "2020-05-05T19:50:32.123Z",
"OOMKilled": false,
"Paused": false,
"Pid": 0,
"Restarting": false,
"Running": false,
"StartedAt": "2020-05-05T19:50:30.085Z",
"Status": "exited"

},
"id": "jgM7JBmqDDjM5",
"io": 396,
"messageReceivedTime": "2020-05-05T19:50:20.925Z",
"runtime": 2,
"startTime": "2020-05-05T19:50:29.723Z",
"status": "COMPLETE",
"workerId": "7XZN4aqvzoJ33"

}
]

},
"status": "success",
"version": "1.6.0"

}

7.3. Search Examples 37

abaco Documentation

38 Chapter 7. Search

CHAPTER 8

Actor State

In this section we describe the state that can persist through Abaco actor container executions.

8.1 State

When an actor is registered, its stateless property is automatically set to true. An actor must be registered with
stateless=false to be stateful (maintain state across executions).

Once an actor is executed, the associated worker GETs data from the /actors/v2/{actor_id}/state end-
point and injects it into the actor’s _abaco_actor_state environment variable. While an actor is executing, the
actor can update its state by POSTing to the aforementioned endpoint.

8.1.1 Notes

• The worker only GETs data from the state endpoint one time as the actor is initiated. If the actor updates its
state endpoint during execution, the worker does not inject the new state until a new execution.

• Stateful actors may only have one associated worker in order to avoid race conditions. Thus generally, stateless
actors will execute quicker as they can operate in parallel.

• Issuing a state to a stateless actor will return a actor is stateless. error.

• The state variable must be JSON-serializable. An example of passing JSON-serializable data can be found
under Examples below.

8.2 Utilizing State in Actors to Accomplish Something

WIP

39

abaco Documentation

8.3 Examples

8.3.1 curl

Here are some examples interacting with state using curl.

Registering an actor specifying statefulness: stateless=false.

$curl -H "$header" \
-X POST \
-d "image=abacosamples/test&stateless=false" \
https://api.tacc.utexas.edu/actors/v2

POSTing a state to a particular actor; keep in mind we must indicate in the header that we are passing content type
application/json.

$curl -H "$header" \
-H "Content-Type: application/json" \
-d '{"some variable": "value", "another variable": "value2"}' \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/state

GETting information about a particular actor’s state.

$curl -H "$header" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/state

8.3.2 Python

Here are some examples interacting with state using Python. The agavepy.actors module provides access to an
actor’s environment data in native Python objects.

Registering an actor specifying statefulness: stateless=false.

>>> from agavepy.agave import Agave
>>> ag = Agave(api_server='https://api.tacc.utexas.edu', token='<access_token>')
>>> actor = {"image": "abacosamples/test",

"stateless": "False"}
>>> ag.actors.add(body=actor)

POSTing a state to a particular actor; again keep in mind we must pass in JSON serializable data.

>>> from agavepy.actors import update_state
>>> state = {"some variable": "value", "another variable": "value2"}
>>> update_state(state)

GETting information about a particular actor’s state. This function returns a Python dictionary with many fields one
of which is state.

>>> from agavepy.actors import get_context
>>> get_context()
{'raw_message': '<text>', 'content_type': '<text>', 'execution_id': '<text>',
→˓'username': '<text>', 'state': 'some_state', 'actor_dbid': '<text>', 'actor_id': '
→˓<text>', 'raw_message_parse_log': '<text>', 'message_dict': {}}

40 Chapter 8. Actor State

abaco Documentation

8.4 Additional Work

• Create a pipeline between worker and actor to exchange state without HTTP latency. (Not worker->server-
>actor->server)

• Develop ‘stateful’ actors that can execute in parallel (utilizing CRDT data-types)

8.4. Additional Work 41

abaco Documentation

42 Chapter 8. Actor State

CHAPTER 9

Actor Sharing and Nonces

Abaco provides a basic permissions system for securing actors. An actor registered with Abaco starts out as private
and only accessible to the API user who registered it. This API user is referred to as the “owner” of the actor. By
making a POST request to the permissions endpoint for an actor, a user can manage the list of API users who have
access to the actor.

9.1 Permission Levels

Abaco supports sharing an actor at three different permission levels; in increasing order, they are: READ, EXECUTE
and UPDATE. Higher permission imply lower permissions, so a user with EXECUTE also has READ while a user with
UPDATE has EXECUTE and READ. The permission levels provide the followig accesses:

• READ - ability to list the actor to see it’s details, list executions and retrieve execution logs.

• EXECUTE - ability to send an actor a message.

• UPDATE - ability to change the actor’s definition.

9.1.1 cURL

To share an actor with another API user, make a POST request to the /permissions endpoint; the following example
uses curl to grant READ permission to API user jdoe.

$ curl -H "Authorization: Bearer $TOKEN" \
-d "user=jdoe&level=READ" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/permissions

Example response:

{
"message": "Permission added successfully.",
"result": {

(continues on next page)

43

abaco Documentation

(continued from previous page)

"jdoe": "READ",
"testuser": "UPDATE"

},
"status": "success",
"version": "1.0.0"

}

We can list all permissions associated with an actor at any time using a GET request:

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/permissions

Example response:

{
"message": "Permissions retrieved successfully.",
"result": {
"jdoe": "READ",
"jsmith": "EXECUTE",
"testuser": "UPDATE"

},
"status": "success",
"version": "1.0.0"

}

Note: To remove a user’s permission, POST to the permission endpoint and set level=NONE

9.2 Public Actors

At times, it can be useful to grant all API users access to an actor. To enable this, Abaco recognizes the special
ABACO_WORLD user. Granting a permission to the ABACO_WORLD user will effectively grant the permission to
all API users.

9.2.1 cURL

The following grants READ permission to all API users:

$ curl -H "Authorization: Bearer $TOKEN" \
-d "user=ABACO_WORLD&level=READ" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/permissions

9.3 Nonces

Abaco provides a capability referred to as actor nonces to ease integration with third-party systems leveraging different
authentication mechanisms. An actor nonce can be used in place of the typical TACC API access token (bearer token).
However, unlike an access token which can be used for any actor the user has access, a nonce can only be used for a
specific actor.

44 Chapter 9. Actor Sharing and Nonces

abaco Documentation

9.3.1 Creating Nonces

API users create nonces using the nonces endpoint associated with an actor. Nonces can be limited to a specific
permission level (e.g., READ only), and can have a finite number of uses or an unlimited number.

The following example uses curl to create a nonce with READ level permission and with 5 uses.

$ curl -H "Authorization: Bearer $TOKEN" \
-d "maxUses=5&level=READ" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/nonces

A typical response:

{
"message": "Actor nonce created successfully.",
"result": {
"_links": {

"actor": "https://api.tacc.utexas.edu/actors/v2/rNjQG5BBJoxO1",
"owner": "https://api.tacc.utexas.edu/profiles/v2/testuser",
"self": "https://api.tacc.utexas.edu/actors/v2/rNjQG5BBJoxO1/nonces/DEV_

→˓qBMrvO6Zy0yQz"
},
"actorId": "rNjQG5BBJoxO1",
"apiServer": "http://172.17.0.1:8000",
"createTime": "2019-06-18 12:20:53.087704",
"currentUses": 0,
"description": "",
"id": "TACC_qBMrvO6Zy0yQz",
"lastUseTime": "None",
"level": "READ",
"maxUses": 5,
"owner": "testuser",
"remainingUses": 5,
"roles": [

"Internal/everyone",
"Internal/AGAVEDEV_testuser_postman-test-client-1497902074_PRODUCTION",
"Internal/AGAVEDEV_testuser_postman-test-client-1494517466_PRODUCTION",

]
},
"status": "success",
"version": "1.0.0"

}

The id of the nonce (in the above example, TACC_qBMrvO6Zy0yQz) can be used to access the actor in place of the
access token.

Note: Roles are used throughout the TACC API’s to grant users with specific privileges (e.g., administrative access
to certain APIs). The roles of the API user generating the nonce are captured at the time the nonce is created; when
using a nonce, a request will have permissions granted via those roles. Most users will not need to worry about TACC
API roles.

To create a nonce with unlimited uses, set maxUses=-1.

9.3. Nonces 45

abaco Documentation

9.3.2 Redeeming Nonces

To use a nonce in place of an access token, simply form the request as normal and add the query paramter x-
nonce=<nonce_id>.

For example

$ curl -X POST -d "message=<your content here>" \
https://api.tacc.utexas.edu/actors/v2/<actor_id>/messages?x-nonce=TACC_vr9rMO6Zy0yHz

The response will be exactly the same as if issuing the request with an access token.

46 Chapter 9. Actor Sharing and Nonces

CHAPTER 10

Networks of Actors

Working with individual, isolated actors can augment an existing application with a lot of additional functionality, but
the full power of Abaco’s actor-based system is realized when many actors coordinate together to solve a common
problem. Actor coordination introduces new challenges that the system designer must address, and Abaco provides
features specifically designed to address these challenges.

10.1 Actor Aliases

An alias is a user-defined name for an actor that is managed independently of the actor itself. Put simply, an alias
maps a name to an actor id, and Abaco will replace a reference to an alias in any request with the actor id defined
by the alias at the time. Aliases are useful for insulating an actor from changes to another actor to which it will send
messages.

For example, if actor A sends messages to actor B, the user can create an alias for actor B and configure A to send
messages to that alias. In the future, if changes need to be made to actor B or if messages from actor A need to be
routed to a different actor, the alias value can be updated without any code changes needed on the part of actor A.

Creating and managing aliases is done via the /aliases collection.

10.1.1 cURL

To create an alias, make a POST request passing the alias and actor id. For example, suppose we have an actor that
counts the words sent in a message. We might create an alias for it with the following:

$ curl -H "Authorization: Bearer $TOKEN" \
-d "alias=counter&actorId=6PlMbDLa4zlON" \
https://api.tacc.utexas.edu/actors/v2/aliases

Example response:

47

abaco Documentation

{
"message": "Actor alias created successfully.",
"result": {
"_links": {

"actor": "https://api.tacc.utexas.edu/actors/v2/6PlMbDLa4zlON",
"owner": "https://api.tacc.utexas.edu/profiles/v2/jstubbs",
"self": "https://api.tacc.utexas.edu/actors/v2/aliases/counter"

},
"actorId": "6PlMbDLa4zlON",
"alias": "counter",
"owner": "apitest"

},
"status": "success",
"version": "1.1.0"

}

With the alias counter created, we can now use it in place of the actor id in any Abaco request. For example, we
can get the actor’s details:

$ curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/counter

The response returned is identical to that returned when the actor id is used.

10.1.2 Nonces Attached to Aliases

Important: Support for Nonces attached to aliases was added in version 1.1.0.

Important: The nonces attached to aliases feature was updated in version 1.5.0, so that 1) UPDATE permission on
the underlying actor id is required and 2) It is no longer possible to create an alias nonce for permission level UPDATE.

Nonces can be created for aliases in much the same way as creating nonces for a specific actor id - instead of using
the /nonces endpoint associated with the actor id, use the /nonces endpoint associated with the alias instead. The
POST message payload is the same. For example:

$ curl -H "Authorization: Bearer $TOKEN" \
-d "maxUses=5&level=READ" \
https://api.tacc.utexas.edu/actors/v2/aliases/counter/nonces

will create a nonce associated with the counter alias.

Note: Listing, creating and deleting nonces associated with an alias requires the analagous permission for both the
alias and the associated actor.

10.2 Actor Events, Links and WebHooks

Important: Support for Actor events, links and webhooks was added in version 1.2.0.

48 Chapter 10. Networks of Actors

abaco Documentation

Abaco captures certain events pertaining to the evolution of the system runtime and provides mechanisms for users to
consume these events in actors as well as in external systems.

First, Abaco provides a facility to automatically send a message to a specified actor whenever certain events occur.
This mechanism is called an actor link: if actor A is registered with a link property specifying actor B, then Abaco
will automatically send actor B a message whenever any of the recognized events occurs.

Second, an actor can be registered with a webhook property: a single string representing a URL to send an HTTP
POST request to. The Abaco events subsystem will send a POST request exactly once to the specified URL whenever
a recognized event occurs.

Webhooks and event messages are guaranteed to be delivered in order relative to the order the events occurred for the
specific actor. Since there is no total ordering on events across different actors, there is no analagous order guarantee.

10.2.1 Links or Webhooks - Which to use?

In both cases, the details of the event are described in a JSON message (sent to an actor in the case of a link, and sent
in the POST payload in the case of a webhook).

However, the actor link is far more general and flexible since the user can define arbitrary logic to handle the event.
Even when the ultimate goal is a webhook, the user may opt for defining a link to an actor that performs the webhook.
This approach enables users to customtize the webhook processing in various ways, including retry logic, authenti-
cation, etc. In fact, the abacosamples/webhook image provides a webhook dispatcher built to parse the Abaco
events message with many configurable options.

Use of an actor’s webhook property is really intended for simple use cases or situations missed or dropped events
will not cause a major issue.

10.2.2 Adding a Link

Registering an actor with a link (or updating an exisitng actor to add a link property) follows the same semantics as
defined in the Actor Registration section; simply add the link attribute in the payload. For example, the following
request creates an actor with a link to actor id 6PlMbDLa4zlON.

$ curl -H "Authorization: Bearer $TOKEN" \
-H "Content-Type: application/json" \
-d '{"image": "abacosamples/test", "name": "test", "link": "6PlMbDLa4zlON",
→˓"description": "My test actor using the abacosamples image.", "default_environment":
→˓{"key1": "value1", "key2": "value2"} }' \
https://api.tacc.utexas.edu/actors/v2

It is also possible to link an actor to an alias: just pass link=<the_alias> in the registration payload.

Note: Setting a link attribute requires EXECUTE permission for the associated actor.

Note: Defining a link property that would result in a cycle of linked actors is not permitted, as this would result in
infinite messages. In particular, an actor cannot link to itself.

10.2.3 Adding a WebHook

Registering an actor with a webhook is accomplished similarly by setting the webhook property in the actor registra-
tion (POST) or update (PUT) payload. For example, the following request creates an actor with a webhook set to the

10.2. Actor Events, Links and WebHooks 49

abaco Documentation

requestbin at https://eniih104j4tan.x.pipedream.net.

$ curl -H "Authorization: Bearer $TOKEN" \
-H "Content-Type: application/json" \
-d '{"image": "abacosamples/test", "name": "test", "webhook": "https://eniih104j4tan.
→˓x.pipedream.net", }' \
https://api.tacc.utexas.edu/actors/v2

10.2.4 Events and Event Message Format

Whenever a supported event occurs, Abaco sends a JSON message to the linked actor or webhook with data about the
event. The included data depends on the event type, as documented below.

In the case of a linked actor, all the typical context variables, as documented in Abaco Context & Container Runtime,
will be injected as usual, excepted where noted below. In this case, note that there are details about two actors: the actor
for which the event occurred and the linked actor itself (which are always different, as self-links are not permitted).
The former is described in the message itself with variables such as actor_id, tenant_id, etc., while the latter is
described using the special reserved Abaco variables, e.g., _abaco_actor_id, etc.

Variable Name Description Event Type
actor_id The id of the actor for which the event occurred. all types
tenant_id The id of the tenant of the actor for which the event occurred. all types
actor_dbid The internal id of the actor for which the event occurred. all types
event_type The event type associated with the event. (see table below) all types
event_time_utc The time of the event, in UTC, as a float. all types
event_time_display The time of the event, as a string, formatted for display. all types
_abaco_link The actor id of the linked actor (the actor receiving the event

message)
all types

_abaco_username ‘Abaco Event’ all types
status_message A message indicating details about the error status. ACTOR_ERROR
execution_id The id of the completed execution. EXECU-

TION_COMPLETE
exit_code The exit code of the completed execution. EXECU-

TION_COMPLETE
status The final status of the completed execution. EXECU-

TION_COMPLETE

The following table lists all events by their event_type value and a brief description. Additional event types may
be added in subsequent releases.

Event type Description
ACTOR_READY The actor is ready to accept messages.
ACTOR_ERROR The actor is in error status and requires manual intervention.
EXECUTION_COMPLETE An actor execution has just completed.

10.3 Actor Configs

Important: Support for Actor configs was added in version 1.9.0.

50 Chapter 10. Networks of Actors

abaco Documentation

The actor configs feature allows users to manage a set of conigurations shared by multiple actors all in one place.
Configs can include both standard configuration as well as “secrets” such as database passwords and API keys. With
actor config secrets, Abaco encrypts the config data before saving it in its database.

Actor configs are managed via new endpoint, /actors/v2/configs. Each config object has the following prop-
erties:

• name - The name of the config. This attribute must be unique within the tenant.

• value - The content of the config to be shared with actors. The value must be JSON-serializable.

• actors - A comma-separated string of actors to share the config data with. The list can include both actor id’s
and aliases. The user creating the config must have UPDATE access to all actors in the list, as sharing a config
with an actor is equivalent to updating the actor’s default environment.

• isSecret (True/False) - Whether the config data should be considered security sensitive. If true, Abaco will
encrypt the config data (i.e., the contents of value) in the database and decrypt it right before injecting it
into the actor container. Additionally, when retrieving the config object using Abaco’s REST API, Abaco will
display the encrypted version of the secret data.

10.3.1 Creating Actor Configs

Here is an example of creating a simple config using curl:

curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/configs \
-H "content-type: application/json" \
-d '{"name": "config_name", "value": "123", "actors": "JBExVooD31rko", "is_secret":
→˓false }'

Warning: When creating actor configs be sure to use content type application/json. Using url-encoded
forms will lead to issues.

In this example, we have shared the config with exactly one actor – the one with id JBExVooD31rko. We can list or
update the config using its name; for example:

curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/configs/config_name \

"message": "Config retrieved successfully.",
"result": {

"actors": "JBExVooD31rko",
"is_secret": false,
"name": "config_name",
"value": "123"

},
"status": "success",
"version": "1.9.0"

Now, whenever we send actor JBExVooD31rko a message, Abaco will inject a special environment variable,
_actor_configs, into the container, and the value of the variable will be a JSON-serializable representation of all
configs that have been shared with the actor. To be precise, the _actor_configs variable will be a JSON object
with a key for each such config equal to the config’s name and value equal to the config’s value.

For example, assuming this is the only config shared with this actor, the actor container would have an environment
variable _actor_configs with value:

10.3. Actor Configs 51

abaco Documentation

_actor_configs={'config_name': '123'}

We can put any JSON-serializable content for the value of the config. For example, we could create and share a
second, more complicated config with the same actor as follows:

curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/configs \
-H "content-type: application/json" \
-d '{"name": "config2", "value": {"key": "some_key", "int_key": 12345, "a list key": [
→˓"a",4, 3.14159]}, "actors": "JBExVooD31rko", "is_secret": false }'

Now when we send a message to actor JBExVooD31rko the _actor_configs variable will have contents

_actor_configs={'config_name': '123', 'config2': "{'key': 'some_key', 'int_key':
→˓12345, 'a list key': ['a', 4, 3.14159]}"}

10.3.2 Updating Actor Configs

Updating an actor config is done by making a PUT request to the /actors/v2/configs/<config_name>
endpoint. A complete description of the config should be given in the PUT body. For example, to add a new actor to
the list of actors that our simple config from above is shared with, we would make a PUT request like so:

curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/configs/config_name \
-X PUT \
-H "content-type: application/json" \
-d '{"name": "config_name", "value": "123", "actors": "JBExVooD31rko, mr_fixer", "is_
→˓secret": false }'

Note that in the above example we have shared the config with both an actor id (JBExVooD31rko) and an alias
(mr_fixer) which is perfectly allowable.

Note: Updating the value of an actor config takes effect immediately in the sense that any new actor execution
will start to use the new value as soon as the PUT request is processed. Thus, actor configs provide a way to update
the configuration for a set of actors simultaneously, with one API request, instead of updating/redeploying individual
actors one at a time.

10.3.3 Actor Config Permissions

It is important to keep in mind that actor config objects have their own permissions, separate from the permissions
associated with the actors a config may be shared with. To see and manage the permissions associated with a config,
use the /actors/v2/configs/<config_name>/permissions endpoint. For example,

curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/configs/config_name/permissions \

{
"message": "Permissions retrieved successfully.",
"result": {

"testuser": "UPDATE"
},
"status": "success",

(continues on next page)

52 Chapter 10. Networks of Actors

abaco Documentation

(continued from previous page)

"version": "1.9.0"
}

A user must have explicit access to a config object to read or update it. When a config is first created, only the owner
has access. We can give access to another user by making a POST request to the permissions endpoint, like so:

curl -H "Authorization: Bearer $TOKEN" \
https://api.tacc.utexas.edu/actors/v2/configs/config_name/permissions \
-H "content-type: application/json" \
-d '{"user": "testotheruser", "level": "UPDATE"}

{
"message": "Permission added successfully.",
"result": {

"testotheruser": "UPDATE",
"testuser": "UPDATE"

},
"status": "success",
"version": "1.9.0"

}

10.3. Actor Configs 53

abaco Documentation

54 Chapter 10. Networks of Actors

CHAPTER 11

Autoscaling Actors

The Abaco platform has an optional autoscaler subsystem for automatically managing the pool of workers associated
with the registered actors. In general, the autoscaler ignores actors that are registered with stateless: False,
as it assumes these actors must process their message queues synchronously. For stateless actors without custom
configurations, the austocaling algorithm is as follows:

1. Every 5 seconds, check the length of the actor’s message queue.

2. If the queue length is greater than 0, and the actor’s worker pool is less than the maximum workers per actor,
start a new worker.

3. If the queue length is 0, reduce the actor’s worker pool until: a) the worker pool size becomes 0 or b) the actor
receives a message.

In particular, the worker pool associated with an actor with 0 messages in its message queue will be reduced to 0 to
free up resources on the Abaco compute cluster.

11.1 Official “sync” Hint

Important: Support for actor hints and the official “sync” hint was added in version 1.4.0.

For some use cases, reducing an actor’s worker pool to 0 as soon as its message queue is empty is not desirable.
Starting up a worker takes significant time, typically on the order of 10 seconds or more, depending on configuration
options for the actor, and adding this overhead to actors that have low latency requirements can be a serious issue.
In particular, actors that will respond to “synchronous messages” (i.e., _abaco_synchronous=true) have low
latency requirements to respond within the HTTP timeout window.

For this reason, starting in version 1.4.0, Abaco recognizes an “official” actor hint, sync. When registered with the
sync hint, the Abaco autoscaler will leave at least one worker in the actor’s worker pool up to a configurable period
of idle time (specific to the Abaco tenant). For the Abaco public tenant, this period is 60 minutes.

The hints attribute for an actor is saved at registration time. In the following example, we register an actor with the
sync hint using curl:

55

abaco Documentation

$ curl -H "Authorization: Bearer $TOKEN" \
-H "Content-type: application/json" \
-d '{"image": "abacosamples/wc", "hints": ["sync"]}' \
https://api.tacc.utexas.edu/actors/v2

56 Chapter 11. Autoscaling Actors

CHAPTER 12

API Reference

The following table lists the public endpoints within the Abaco API.

GET POST PUT DELETE Endpoint Description
X /actors/v2/utilization Get high-level usage stats.
X X /actors/v2 List/create actors.
X X /actors/v2/aliases List/create aliases.
X X /actors/v2/aliases/{alias} List/delete an alias.
X X X /actors/v2/{actor_id} List/update/delete an actor.
X X /actors/v2/{actor_id}/messages Get number messages/send mes-

sage
X X /actors/v2/{actor_id}/nonces List/create actor nonces.
X X /actors/v2/{actor_id}/nonces/{nonce_id} Get nonce details/delete nonce.
X X /actors/v2/{actor_id}/state Retrieve/update actor state.
X X /actors/v2/{actor_id}/workers List/create actor workers.
X X /actors/v2/{actor_id}/workers/{worker_id} Get worker details/delete worker
X X /actors/v2/{actor_id}/permissions List/update actor permissions.
X /actors/v2/{actor_id}/executions List execution summaries.
X X /actors/v2/{actor_id}/executions/{eid} Get details/Halt execution.
X /actors/v2/{actor_id}/executions/{eid}/logs Retrieve execution logs.
X /actors/v2/{actor_id}/executions/{eid}/resultsRetrieve execution results.
X /actors/v2/search/{database} Searches specified database
X /metrics

57

abaco Documentation

58 Chapter 12. API Reference

CHAPTER 13

Abaco Samples

In order to simplify the creation of Abaco actors, the Abaco team is developing a suite of Docker images that provide
code examples and convenience utilities. This growing catalogue of public example images is available on the public
Docker Hub within the abacosamples Docker organization.

59

abaco Documentation

60 Chapter 13. Abaco Samples

CHAPTER 14

Reactor Recipes

Coming soon. . . some effective patterns for event-driven programming with Abaco.

61

abaco Documentation

62 Chapter 14. Reactor Recipes

CHAPTER 15

Overview

In this section we cover additional tools and resources for working with the Abaco Platform.

63

abaco Documentation

64 Chapter 15. Overview

CHAPTER 16

Abaco CLI

The Abaco CLI is a command line toolkit for developing, managing and using Abaco Actors. The CLI can be installed
directly from its github repository, https://github.com/TACC-Cloud/abaco-cli. Please follow the instructions found on
the project’s README.

65

https://github.com/TACC-Cloud/abaco-cli

abaco Documentation

66 Chapter 16. Abaco CLI

CHAPTER 17

Using Abaco from the TACC Cloud JupyterHub

Coming soon. . . executing functions in parallel on Abaco from the TACC Cloud Jupyter Hub.

67

	Welcome to Abaco
	What is Abaco
	Using Abaco

	Getting Started
	Account Creation and Software Installation
	Working with TACC OAuth
	Abaco Quickstart

	Overview
	Actor Registration
	Notes
	Examples

	Abaco Context & Container Runtime
	Context
	Runtime Environment

	Messages, Executions, and Logs
	Messages
	Executions
	Logs

	Search
	Metadata
	Inputs
	Search Examples

	Actor State
	State
	Utilizing State in Actors to Accomplish Something
	Examples
	Additional Work

	Actor Sharing and Nonces
	Permission Levels
	Public Actors
	Nonces

	Networks of Actors
	Actor Aliases
	Actor Events, Links and WebHooks
	Actor Configs

	Autoscaling Actors
	Official “sync” Hint

	API Reference
	Abaco Samples
	Reactor Recipes
	Overview
	Abaco CLI
	Using Abaco from the TACC Cloud JupyterHub

